A GENERIC REVISION AND CATALOG OF THE WESTERN HEMISPHERE GLENURINI WITH THE DESCRIPTION OF A NEW GENUS AND SPECIES FROM BRAZIL (NEUROPTERA: MYRMELEONTIDAE)

By L. A. Stange
CONTRIBUTIONS IN SCIENCE is a series of miscellaneous technical papers in the fields of Biology, Geology and Anthropology, published at irregular intervals by the Los Angeles County Museum of Natural History. Issues are numbered separately, and numbers run consecutively regardless of subject matter. Number 1 was issued January 23, 1957. The series is available to scientific institutions and scientists on an exchange basis. Copies may also be purchased at a nominal price. Inquiries should be directed to Virginia D. Miller, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007.

ROBERT J. LAVENBERG
Managing Editor

INSTRUCTIONS FOR AUTHORS

Manuscripts for the LOS ANGELES COUNTY MUSEUM, CONTRIBUTIONS IN SCIENCE may be in any field of Life or Earth Sciences. Acceptance of papers will be determined by the amount and character of new information. Although priority will be given to manuscripts by staff members, or to papers dealing largely with specimens in the Museum's collections, other technical papers will be considered. All manuscripts must be recommended for consideration by the curator in charge of the proper section or by the editorial board. Manuscripts must conform to those specifications listed below and will be examined for suitability by an Editorial Committee. They may also be subject to review by competent specialists outside the Museum.

Authors proposing new taxa in a CONTRIBUTIONS IN SCIENCE must indicate that the primary type has become the property of a scientific institution of their choice and cited by name.

MANUSCRIPT FORM.—(1) The 1964 AIBS Style Manual for Biological Journals is to be followed in preparation of copy. (2) Double space entire manuscript. (3) Footnotes should be avoided if possible. Acknowledgments as footnotes will not be accepted. (4) Place all tables on separate pages. (5) Figure legends and unavoidable footnotes must be typed on separate sheets. Several of one kind may be placed on a sheet. (6) An abstract must be included for all papers. This will be published at the head of each paper. (7) A Spanish summary is required for all manuscripts dealing with Latin American subjects. Summaries in other languages are not required but are strongly recommended. Summaries will be published at the end of the paper. (8) A diagnosis must accompany any newly proposed taxon. (9) Submit two copies of manuscript.

ILLUSTRATIONS.—All illustrations, including maps and photographs, will be referred to as figures. All illustrations should be of sufficient clarity and in the proper proportions for reduction to CONTRIBUTIONS page size. Consult the 1964 AIBS Style Manual for Biological Journals in preparing illustration and legend copy for style. Submit only illustrations made with permanent ink and glossy photographic prints of good contrast. Original illustrations and art work will be returned after the manuscript has been published.

PROOF.—Authors will be sent galley proof which should be corrected and returned promptly. Alterations or changes in the manuscript after galley proof will be billed to the author. Unless specifically requested, page proof will not be sent to the author. One hundred copies of each paper will be given free to each author or divided equally among multiple authors. Orders for additional copies must be sent to the Editor at the time corrected galley proof is returned. Appropriate order forms will be included with the galley proof.

VIRGINIA D. MILLER
Editor
A GENERIC REVISION AND CATALOG OF THE WESTERN HEMISPHERE GLENURINI WITH THE DESCRIPTION OF A NEW GENUS AND SPECIES FROM BRAZIL (NEUROPTERA: MYRMELEONTIDAE)

By L. A. Stange¹

ABSTRACT: Studies of the type species of described glenurine genera have led to considerable new synonymy as follows: Elachyleon Esben-Petersen 1927 (=Sericoleon Esben-Petersen 1932); Eremoleon Banks 1901 (=Incamoleon Banks 1913; =Sosa Navás 1914; =Cortesius Navás 1914; =Dobla Navás 1926; =Joergentina Esben-Petersen 1932; =Antiloleon Banks 1943); Psammoleon Banks 1899 (=Diazus Navás 1914). Pachyleon alvarangai, new genus and new species, is described from Mato Grosso, Brazil. Eight genera are now recognized and a key is given for their identification. Each genus is characterized and briefly discussed, including new synonyms. A complete bibliography and catalog is provided for the Western Hemisphere Glenurini. New information contained in this catalog includes the following new species synonymy: Psammoleon cautus (Walker) 1853 (=Feinerus nebulosus Navás 1922); Psammoleon serrei (Navás) 1920 (=Formicaleo chaperi Navás 1922); Glenurus peculiaris (Walker) 1859 (=Glenurus brasiliensis Navás 1920); Eremoleon macer (Hagen) 1861 (=Hesperoleon atomarius Navás 1933). Also a number of new combinations are indicated. The tribe Dimarellini Markl 1954 is now considered a synonym of the Glenurini Banks 1928. The tribe Glenurini is now referred to the subfamily Myrmeleontinae.

INTRODUCTION

The tribe Glenurini is one of the largest tribes of antlions in the world in numbers of described genera. Markl (1954:246) lists 30 genera of Glenurini from all major zoogeographical regions of which sixteen are restricted in distribution to the Western Hemisphere. However, no modern comprehensive generic study has ever been made of the Glenurini. Furthermore the definition of the tribe is probably deficient judging from the paucity of taxonomic characters given by Markl (1954, p. 245) and earlier authors. The present account deals only with the glenurine genera of the Western Hemisphere. An attempt is made to signal taxonomic characters of importance and to point out the variation that exists in others that have been used in the classification of the tribe. Terminology is adopted from Stange (1970).

¹Department of Zoology, Instituto Miguel Lillo, San Miguel de Tucumán, Argentina.
ACKNOWLEDGMENTS

Study of nearly all of the types of the type species of glenurine genera by me was made possible only by the cooperation of numerous individuals and organizations. I am especially indebted to the Society of Sigma Xi for a Grant-in-Aid of research which enabled me to study type material in Europe during the summer of 1964. I would also like to thank Dr. S. L. Tuxen, Copenhagen University, and Dr. Max Beier, Vienna Museum, for the loan of type material. The following list of collections mentioned in the present study also includes the names of persons who facilitated my studies: AMNH, American Museum of Natural History, Dr. Jerome Rosen; Barcelona, Museo de Zoología, Barcelona, Dr. Francisco Español Coll.; Berlin, Institut für spezielle Zoologie und zoologisches Museum, East Berlin, Dr. E. Konigsmann; BM(NH), British Museum (Natural History), London, Mr. D. E. Kimmins; CAS, California Academy of Sciences, Dr. Edward Ross; Copenhagen, Universitets Zoologiske Museum, Copenhagen, Dr. S. L. Tuxen; Greifswald, Zoologisches Institut und Museum, Ernst-Moritz-Arndt-Universität, Greifswald. Dr. Ilsetotte Groth. Halle, Zoológisches Institut, Martin-Luther-Universität, Halle-Saale, Dr. J. O. Hüsing; Havana, Instituto de Biología, La Habana; LACM, Los Angeles County Museum of Natural History, Dr. Charles Hogue; La Plata, Museo de La Plata, Facultad de Ciencias Naturales, La Plata, Prof. Luis De Santis; MACN, Museo Argentino de Ciencias Naturales, Buenos Aires, Dr. Manuel Viana; MCZ, Museum of Comparative Zoology, Harvard University, Dr. Howard Evans; Paris, Muséum National d’Histoire Naturelle, Paris, Miss S. Kelner-Pillault; Hamburg, Zoologisches Staatsinstitut und Zoologisches Museum, Hamburg; Turin, Instituto e Museo di Zoologia, Università di Torino, Turin; USNM, United States National Museum, Dr. Oliver Flint; Vienna, Naturhistorisches Museum, Vienna, Dr. Max Beier; Zaragoza, Colegio del Salvador, Zaragoza.

SYSTEMATIC POSITION OF THE GLENURINI

Banks (1943, p. 166) classified genera of the Glenurini in the subfamily Macronemurinae. Markl (1954) published a comprehensive world classification of the Myrmeleontidae but eliminated subfamilies and only dealt with tribes. Stange (1968) placed the Glenurini in the subfamily Dendroleontinae. My attempts to provide a satisfactory definition of the Dendroleontinae from the Myrmeleontinae have now convinced me that this separation can not be maintained. Therefore I consider the subfamilies Dendroleontinae and Macronemurinae to be synonyms of the Myrmeleontinae. Essentially only two venational characters have been employed in the past for separating these subfamilies. One is the condition of vein 2A of the forewing. In some groups (Dendroleon and Brachynemurus) vein 2A is evenly curved from its base to its termination whereas it is strongly angled in Myrmeleon L, Macronemurus (an old world genus), and in nearly all of the Glenurini. However the close struc-
tural resemblance between *Dendroleon* and some genera of the Glenurini (i.e. *Glenurus*) argues against such an extreme separation. Furthermore vein 2A shows some variation in the Glenurini. In a new genus to be described later in this paper, vein 2A is closely associated with 3A and not with 1A as is typical in the tribe. Also in an undescribed species (*Mystroleon praedator* Sensu Banks) vein 2A is intermediate in condition between typical Glenurini and Dendroleontini. For these reasons I consider this character insufficient for separating subfamilies. The second venational character that has figured prominently in subfamily classifications is the number of hindwing presectoral cross veins. In the Myrmeleontinae there are four or more such crossveins whereas the typical number in the Dendroleontinae is one. However, within the tribe Brachynemurini, which I consider closely related to the Glenurini, there are sometimes several crossveins depending upon the point of origin of the radial sector. This indicates that the number of presectoral crossveins is of limited value as a subfamily character.

Markl (1954) recognizes numerous tribes that are referable to the Myrmeleontinae. Probably many of these are invalid. Markl defines the Glenurini almost entirely on wing venational characters some of which I have found to be variable. Markl emphasizes the forking of forewing veins 2A and 3A. In the Glenurini, Nyutini (restricted to Africa) and Dimarellini (restricted to the Neotropical Area), vein 2A is forked and 3A is simple. Other related tribes, all restricted to the Eastern Hemisphere, have vein 2A simple and 3A forked. This condition is given for the Formicaleontini, Creoleontini, Obini, Nemo-leontini and Protoplectrini. However this character is variable, even at the specific level in some instances. In the genurine genus *Eremoleon*, most species fit the concept of Markl (vein 2A forked, 3A simple in *insipidus*, *longior*, etc.) but other species show the opposite condition (as in some *nigribasis*). Therefore this character is of limited taxonomic importance. Another venational character that Markl uses in differentiating the Glenurini (from the Dimarellini and Nyutini) is the presence of the anterior banksian line. This prominent longitudinal line is found in either wing and is formed by the bending of the branches of the radial sector. It is highly variable in its development in the genus *Brachynemurus*, a member of the related tribe Brachynemurini. In the tribe Glenurini, nearly all of the Western Hemisphere species that I have examined show no development of the banksian lines. It is apparent that Markl was in error employing this character in the diagnosis of the Glenurini (at least the Western Hemisphere component).

Markl (1954, p. 247) defined the tribe Dimarellini on venational characters which Stange (1963, p. 810) criticized. Stange offered the character of the pretarsal claws as a possible means of separating the Dimarellini from the Glenurini. With this new criterion the genera *Elachyleon* and *Navaseleon* were removed from the Glenurini and placed with *Dimarella* in the Dimarellini. In these three genera the pretarsal claws are capable of closing against the distal
tarsomere whereas the claws are ordinary in other genera. However it is now apparent that this specialized condition of the pretarsal claws have evolved several times in unrelated groups of Myrmeleontidae as evidenced by the occurrence of this character in the Dendroleontini (Tricholeon Esben-Petersen from Africa; Froggattisca Esben-Petersen from Australia) and in the Glenurini (Megistopus Rambur from Europe). The genus Elachyleon, possessor of the specialized pretarsal claws, agrees with the glenurine genus Ere moleon in all generic level taxonomic characters except the condition of the pretarsal claws. Thus, I now consider the pretarsal claw character to be a generic character. In search of a possible new means of maintaining the tribe Dimarellini I have reconsidered all the specialized features of the genus Dimarella. The members of this genus differ from other Glenurini in the following characters: (1) wing venation (CuP + 1A run parallel with the posterior fork of forewing CuA); (2) antennal fossa widely separated from eye; (3) male ectoproct with elongate postventral lobe; (4) form of the male gonarcus (large lateral expansions) and shape of the parameres (not in the form of flat plates). A new genus to be described later in this paper also shares these characters (but has ordinary pretarsal claws). However recent study of the poorly known species Psammoleon-cautus has revealed that this species is intermediate between the genus Dimarella and the glenurine genus Psammoleon. This species appears to be a rather ordinary Psammoleon in regards to the wing venation, head structure and legs but possesses the elongate postventral lobe of the male ectoproct as in Dimarella as well as comparable development of the male gonarcus and parameres.

From the foregoing discussion it is apparent that we are confronted with a weak tribal classification of the Myrmeleontinae. More study is needed of the Old World genera of the Glenurini as well as of the related Old World tribes Formicaleontini, Creoleontini, Obini, Nemo leontini, Protoplectcrini and Nyutini before a satisfactory world-based classification can be given. The new world tribe Dimarellini can not be maintained and I now consider Dimarella as a rather specialized genus of the Glenurini.

In the Western Hemisphere there is less diversity in the Myrmeleontinae, at least from the point of view of described tribes. The following key will distinguish the Glenurini from other Western Hemisphere groups of antsions.

1. Sensory pit of the distal labial palpomere slitlike: hindleg with femoral sense hair or femoral sense hair absent...............Palparinae and Acanthaclisinae Sensory pit of the distal labial palpomere oval-shaped; femoral sense hair present on foreleg and midleg (except few species of Brachynemurus) but not on hindleg...........................................................(Myrmeleontinae) 2

2. Forewing vein 2A evenly curved from base to hind margin, widely separated from 3A at least at basal one-half.......Dendroleontini and Brachynemurini Forewing vein 2A runs close to vein CuP + 1A for a short distance, then
abruptly angles toward hind margin or veins 2A and 3A closely associated.

3. Radial sector of hindwing arises beyond cubital fork, four or more presectoral crossveins present; pilula axillaris present...........Myrmeleontini and

Radial sector of hindwing arises well before cubital fork, one (rarely two or three) presectoral crossveins present; pilula axillaris absent...........Glenurini

WESTERN HEMISPHERE GENERA OF THE GLENURINI

All of the glenurine genera known from the Western Hemisphere are restricted to that area. It is possible that this reflects the regionalism of former workers on this group since no modern world study has been made. Even the Nearctic and Neotropical faunas of the Glenurini have not been treated together. Banks provided keys to the Nearctic genera (1928) and the Neotropical genera (1943). The Nearctic fauna is relatively small. The three genera represented in this region are also found in both the North American and South American Neotropical areas. All of the new world glenurine genera are found in South America and three of these are restricted to that continent. Twenty-four generic names have been proposed for the Western Hemisphere Glenurini. Some of these have been placed in synonymy. My study of nearly all of the type species of Western Hemisphere genera of the Glenurini has led to the discovery of further generic synonymy. In the following account of the glenurine genera this synonymy will be discussed.

Araucaleon Banks


Type-species: _Araucaleon inca_ Banks, by original designation.

_Description:_ Antennal fossa separated from ocular rim by less than greatest diameter of pedicel; antenna long and slender; pronotum longer than wide; mesoscutellum smaller than metanotum; all legs about equal in length; tibial spurs longer than forecoxal length; pretarsal claws not capable of closing against distal tarsomere; forewing with anterior margin abruptly angled and swollen near coalescing of subcostal and radial veins, costal area at this point nearly twice as high as at middle of wing; forewing radial sector originates well basal to forking of CuA; posterior fork of forewing vein CuA at an oblique angle to hind margin; forewing vein 2A widely separated from normal 3A before strong angle; hindwing vein CuA ends well before midpoint to forking of MP₂; male ectoproct simple, without postventral lobe; male paramere in form of rigid plate; male gonarcus not greatly expanded laterally.

_Description:_ This genus is rare in collections. I have seen only two males of the type-species. In addition, _Glenurus withycombei_ Esben-Petersen, described from Trinidad, belongs to _Araucaleon_. This species is known only from the holotype female. This genus appears to be allied with _Eremoleon_ Banks.
but differs from that genus and other known glenurine genera by the swelling of the forewing costal margin near the point of coalescing of the subcostal and radial veins and by the termination of vein CuA of the hindwing well before the midpoint between the wing base and forking of MP₂.

**Dimarella** Banks


**Type-species:** *Eremoleon angustus* Banks, by original designation.

**Description:** Antennal fossa separated from ocular rim by more than greatest diameter of pediceal; antenna variable in length; pronotum wider than long; mesoscutellum as long as metanotum; legs different in lengths, often midleg shortest; tibial spurs much shorter than forecoxa1 length; pretarsal claws capable of closing against distal tarsomere; forewing with anterior margin evenly curved toward apex, costal area at point of coalescing of subcostal and radial veins usually lower than at middle of wing; forewing radial sector originates well beyond forking of CuA; forewing vein CuP + 1A runs parallel with posterior branch of CuA for a long distance; forewing vein 2A usually widely separated from normal 3A before strong angle toward posterior margin; hindwing vein CuA ends near forking of MP₂; male ectoproct with elongate postventral lobe; male paramere with hook; male gonarcus expanded laterally as a round plate; female ectoproct with strong digging setae ventrally, shorter than on lateral gonapophyses.

**Discussion:** *Dimarella* is limited to the Neotropical Region. Synonymical notes on the genus were given by Stange (1963;1968). The Mexican species were revised by Stange (1963). This genus stands apart from other described genera by the prominent postventral lobe of the male ectoproct, the parallel course of veins CuP + 1A and CuA of the forewing and the wide space between the ocular rim and antennal fossa. All of these features are shared with a new genus to be described later in this paper. The specialized pretarsal claws is a morphological trait shared only with *Navasoleon* and *Elachyleon*.

**Elachyleon** Esben-Petersen


**Description:** Antennal fossa separated from ocular rim by less than greatest diameter of pediceal; antenna long and slender; mesoscutellum shorter than metanotum; all legs about equal in length; tibial spurs shorter than forecoxa1 length; pretarsal claws capable of closing against distal tarsomere; forewing with anterior margin evenly curved toward apex, costal area at point
of coalescing of subcostal and radial veins either somewhat lower or higher than at middle of wing; forewing radial sector originates only somewhat before forking of CuA or well beyond; posterior fork of forewing vein CuA at an oblique angle to hind margin; forewing vein 2A widely separated from normal 3A before strong angle toward posterior margin; hindwing vein CuA extends nearly to forking of MP; male ectoproct simple, without postventral lobe; male paramere in form of rigid plate; male gonarcus not greatly expanded laterally; female ectoproct usually with weak digging setae; posterior gonapophysis longer than wide, digitiform.

Discussion: I have studied one of the paratypes of the type-species of Sericoleon, S. paessleri Esben-Petersen, described from Chile. This species possesses all of the generic characters of Elachyleon and therefore I am placing Sericoleon in synonymy with Elachyleon. Elachyleon can be distinguished from all other Western Hemisphere Myrmeleontidae by the specialized pre-tarsal claws, except for Navasoleon (which lacks tibial spurs) and Dimarella (which has forewing veins CuP + 1A and CuA parallel). This genus agrees closely with Eremoleon in both morphological and biological characters. I have reared an undescribed species from Mexico and from Argentina. Both species are found in the silt floors of caves. This is the same habitat for various species of Eremoleon. Elachyleon is now constituted of four described species. The most widespread species, E. punctipennis (ranges from Mexico to Argentina) has been illustrated in part by Stange (1963). Additional generic synonymy is given by Stange (1968).

**Eremoleon** Banks


Description: Antennal fossa separated from ocular rim by less than great-
est diameter of pedicel; antenna long and slender; pronotum variable, usually longer than wide; mesoscutellum shorter than metanotum; legs about equal in length except usually hind legs longer; tibial spurs variable in length, usually shorter than fore coxal length; pretarsal claws not capable of closing against distal tarsomere; forewing with anterior margin evenly curved toward apex, costal area at point of coalescing of subcostal and radial veins usually lower than at middle of wing; forewing radial sector originates somewhat before forking of CuA or well beyond; posterior fork of forewing vein CuA at an oblique angle to hind margin; forewing vein 2A widely separated from normal 3A before strong angle toward posterior margin; hindwing vein CuA extends nearly to forking of MP₂ or somewhat beyond; male ectoproct simple without postventral lobe; male paramere in form of rigid plate; male gonarcus not greatly expanded laterally; female ectoproct usually with weak digging setae; posterior gonapophysis longer than wide, digitiform.

Discussion: There is considerable new generic synonymy in addition to that reported by Navás (1916) Banks (1928) & Adams (1957, 1958). These new synonyms will be discussed in chronological order.

Incamoleon Banks 1913—The type-species of this genus, punctipennis Banks, was originally described in the genus Psammoleon. Banks separated this species in its own genus apparently based on the longer, more slender legs of punctipennis. Also the wing shape is more slender than in Psammoleon. All of these features are found in the genus Eremoleon. Banks (1943:166) distinguishes Incamoleon from Eremoleon (=Glenopsis Banks) by the relative length of the tarsomeres. In Incamoleon the distal tarsomere is about equal to the other tarsomeres together whereas in Eremoleon the distal tarsomere is shorter. However my studies on Incamoleon punctipennis have revealed that this tarsomere proportion character is not constant and although useful for identification it is not important enough for generic distinction. Further studies have revealed two characters found in Incamoleon that are unknown in other Eremoleon. First, there is marked sexual dimorphism. The female wings usually have conspicuous dark spots, whereas the wings are not spotted (or only weakly so) in the males. Also the female genitalia appear somewhat distinct in that the posterior gonapophysis is more inflated than in other members of the genus Eremoleon. However I am of the opinion that these two characters are not sufficient to maintain Incamoleon as a distinct genus so that I am now referring punctipennis to the genus Eremoleon.

Sosa Navás 1914—I studied the holotype female of the type-species, Sosa conspicuus, in 1962 from the collections of the Vienna Museum. Navás gave few notes in his original description as to the basis of this new genus but did point out that it was related to Formicaleon (an old world genus) but with longer and more slender legs and that the genus might belong to the Dendroleontini. However my studies of the holotype revealed no important differences from the current generic concept of Eremoleon Banks. Sosa conspicuus re-
semel Eremoleon macer (Hagen) except that the wings are more slender. This species is now placed in Eremoleon.

Cortesius Navás 1924—I studied the two syntypes of the type-species, Cortesius genini Navás, in the Paris Museum in 1964. Navás (1924:107) did not give much information in his original description as to the relationships of this genus except to point to a similarity with the genus Glenurus Hagen. My studies revealed that Cortesius genini agrees with all generic characters of Eremoleon. The only unusual feature of this species is that the forewing costal area is biareolate to triareolate. Interconnected crossveins in the costal area are found otherwise only in the genus Psammoleon among the Glenurini.

Dobla Navás 1926—The holotype female of the type-species, Dobla arcuata Navás, is located in the Paris Museum. My studies of the holotype indicate that it is a synonym of Cortesius genini Navás. Therefore the genus Dobla is a synonym of Eremoleon Banks.

Joergenia Esben-Petersen 1932—I have just recently received for study the holotype female of the type-species, Joergenia pulchra Esben-Petersen, on loan from the Copenhagen Museum. Although this species is quite distinctive by virtue of the unusual narrowing of the wings, especially of the costal area, I have not found characters that would warrant generic separation from Eremoleon. There is considerable range in the relative broadening of the costal area in Eremoleon and I am of the opinion that J. pulchra represents one extreme. The other extreme, broadening of the costal area, is exemplified by E. genini (Navás) and E. anomalus (Rabur), whereas intermediate conditions are found in E. conspicuus (Navás), E. gracile Adams and many others. I have also seen an undescribed species of Eremoleon from Venezuela which has the costal area nearly as narrow as in J. pulchra.

Antiloleon Banks 1943—I have studied the type material of the type-species, Glenurus cerverai Navás, in the collections of the Museum of Comparative Zoology, Harvard University. Banks (1943:167) pointed out the unusual venational feature present in the Caribbean species. The radial sector originates only a little beyond the level of forking of CuA in the forewing. In most other species of the Glenurini the radial sector originates well beyond the forking of CuA. However in the genus Araucaleon Banks, the radial sector originates well before the forking of CuA, a peculiarity in the Glenurini. In other respects A. cerverai Navás agrees well with species of the genus Eremoleon. Considerable variation is present in the genus Eremoleon in the relative position of the origin of the radial sector and forking of CuA. I am, therefore, of the opinion that Glenurus cerverai belongs to the genus Eremoleon, Antiloleon thus falling as a synonym of Eremoleon.

Revisonary studies are needed of the genus Eremoleon which appears to be a complex taxon. Adams (1957) presented a key to most of the Nearctic species. There is no one key character of the genus which permits easy recognition, although the genus differs considerably from other glenurine genera.
except *Elachyleon* Esben-Petersen, which has specialized pretarsal claws. I have reared four species of *Eremoeleon* (from Arizona, Mexico and Argentina) and all exhibit similar biological characteristics. The larvae live in the silt of caves or rock crevices and seem to be good climbers.

**Glenurus** Hagen


Type-species: *Formicaleo grata* Say.

*Description*: Antenna fossa separated from ocular rim by less than greatest diameter of pedicel; antenna long and slender; mesoscutellum shorter than metanotum; all legs about equal in length except hindlegs usually somewhat longer; tibial spurs longer than forecoxal length; pretarsal claws not capable of closing against distal tarsomere; forewing with anterior margin evenly curved toward apex, costal area at point of coalescing of subcostal and radial veins somewhat lower or higher than at middle of wing; forewing radial sector originates well beyond forking of CuA; posterior fork of forewing vein CuA at an oblique angle to hind margin; forewing vein 2A widely separated from normal 3A before strong angle toward posterior margin; hindwing vein CuA extends nearly to or somewhat beyond forking of MP₂; male ectoproct simple without postventral lobe; male paramere in form of rigid plate; male gonarcus not greatly expanded laterally; female ectoproct with prominent digging setae; posterior gonapophysis weakly produced as a swelling.

*Discussion*: This is a very homogeneous genus easily recognized by the considerable brown suffusion of the wing apices. *G. heteropteryx* is the only known species that lacks this prominent suffusion in the forewing, although the hindwing conforms with the rest of the genus. Structurally *Glenurus* seems close to *Eremoeleon* but differs from that genus as well as all other glenurine genera in having the posterior gonapophysis poorly developed. Banks (1922) has provided a key to the South American species and (1928) to the Nearctic species.

**Navasoleon** Banks


*Description*: Antenna fossa separated from ocular rim by less than greatest diameter of pedicel; antenna long and slender; mesoscutellum shorter than metanotum; foreleg (at least females) much longer than midlegs and hindlegs; tibial spurs absent; pretarsal claws capable of closing against distal tarsomere; forewing with anterior margin evenly curved toward apex, costal area at point of coalescing of subcostal and radial veins lower than at middle of wings; forewing radial sector originates well beyond forking of CuA; posterior fork of forewing vein CuA at an oblique angle to hind margin; forewing vein 2A widely separated from normal 3A before strong angle toward posterior margin;
hindwing vein CuA extends somewhat beyond forking of MP₂; female ecto-
proct with small digging setae; posterior gonapophysis swollen thumb-like.

Discussion: Navasoleon is a poorly known genus and male specimens
are unavailable for study. The genus appears very distinct. The lack of tibial
spurs is diagnostic and the specialized pretarsal claws is found only in Elachy-
leon and Dimarella. In the type-species of the genus and also in an undescribed
species the foreleg is unusually long. The species known from Argentina has
shorter front legs but the specimen is damaged to such an extent that the sex
is undeterminable.

Pachyleon Stange, new genus

Diagnosis: This genus is distinguished from other glenurine genera in
the Western Hemisphere except Dimarella by the following characters: (1)
forewing vein 2A is closely associated with vein 3A for its entire course (see
Fig. 2); (2) radial and subcostal veins in both wings crowded together; (3)
antennal fossa separated by more than greatest diameter of scape from ocular
rim; (4) forewing veins CuP + 1A and posterior branch of CuA run parallel
for a long distance. Pachyleon is closely allied to Dimarella but differs from
that genus in two important characters: (1) pretarsal claws simple in Pachy-
leon, specialized in Dimarella (capable of closing against tarsomere); (2)
hindwing broadly triangular in Pachyleon (greatest breadth about equal to
forewing) whereas it is more slender in Dimarella (greatest breadth of hind-
wing much less than that of forewing). The structural gap between Pachyleon
and Dimarella would be even greater if it were not for a recently discovered
(apparently undescribed) species of Dimarella which has the condition of fore-
wing vein 2A (closely associated with 3A) very similar to that in Pachyleon.
Pachyleon and Dimarella share so many characters that are not found in
almost all other Glenurini that they form a group apart. However Psammoleon
cautus (Walker) represents an intermediate type between Psammoleon and
these two genera. The unusual shape of the hindwing of Pachyleon provides a
key character for the genus. It remains to be seen whether or not the broad
hindwing is of generic or specific importance since considerable variation
exists in the relative broadening of the hindwing in the allied genus Dimarella.

Description: Antennal fossa separated from ocular rim by more than
greatest width of antennal scape; antenna short and thick; pronotum much
broader than long; thorax depressed, mesoscutellum as long as metanotum;
foreleg moderately short and thickened, midleg greatly swollen and short,
hindleg relatively long, about twice as long as foreleg; tarsomeres of foreleg
and midleg about equal, those of hindleg much longer; tibial spurs present,
much shorter than forecoxa length; pretarsal claws not capable of closing
against distal tarsomere; femoral sense hair of foreleg short, much less than
one-half length of femur; banksian lines absent; subcostal and radial veins
crowded together, nearly touching well before their apical fusion; forewing
vein CuP + 1A runs parallel with posterior branch of CuA for a long distance; forewing vein 2A widely separated from 1A, closely associated and almost fused with vein 3A, not greatly angled; male ectoproct with elongate postventral lobe; male genitalia not rigid, paramere with hook; gonarcus expanded laterally as a large round plate; female ectoproct simple with strong digging setae ventrally; lateral gonapophyses separated, with longer digging setae than on ectoproct; posterior gonapophysis digitiform, longer than wide.

The generic name is from the Greek words Pachys meaning wide and leon meaning lion, in reference to the broad wings, pronotum and head. The following new species is the type-species of the genus.

**Pachyleon alvarengai** Stange, new species

*Diagnosis:* As the only species in the genus, the generic characters serve to distinguish this species. The unusually short and broadened wings, especially the rather triangular hindwing (see Fig. 8) is distinctive among all known species of ant-lions in the Western Hemisphere. This unusual hindwing shape is also unknown to me in Old World species but I do not have a perfect knowledge of the Old World fauna. The most similar species is a Dimarella (probably undescribed) in which the wings are similar in shape although not as extreme as in *P. alvarengai* and in which vein 2A is closely associated with vein 3A.
Description (Holotype male): Length of body about 19 mm, forewing 15 mm, hindwing 11 mm, greatest wing width (about equal in forewing and hindwing) 4.75 mm.

Color: Face (Fig. 1) pale yellowish with \( \wedge \)-shaped dark brown mark at middle below antennae and crescent-shaped dark brown mark above each antenna, sublateral spot on each side of clypeus, larger dark brown area laterad of antenna toward eye, extending ventrally and dorsally nearly to first row of vertex scars; vertex with grayish bloom, scar pattern about as in Fig. 8; antenna with scape and pedicel pale yellow with dark brown behind, flagellomeres dark brown basally and much paler distally; maxilla and labium nearly all pale yellow except distal palpomere and cardo with dark brown; postgena mostly dark brown; pronotum mostly dark brown with grayish bloom interrupted by irregular paler areas; notum II and III dark brown with grayish bloom, darker velvety areas as follows: submedial triangular area on each side of prescutum II; dark brown oval spot each side of middle and touching, surrounded by golden colored microtrichia on prescutum III; large curved dark brown mark sublaterally near anterior margin of scutum; postscutellum II and III nearly all black; cervical sclerites pale yellow; pleuron and sternum mostly dark brown with grayish bloom, paler brown areas mostly in front of midcoxa and hindcoxa, mesopleural wing process yellowish; forecoxa mostly pale brown, other coxae darker brown; forefemur pale brown with numerous dark brown spots, spots becoming confluent on most of exterior face and on distal one-third of closing face; foretibia pale brown with dark brown spots and small dark brown stripes at basal one-third of exterior face, larger dark brown areas at middle, mostly complete but smaller apical rings, dark brown areas interconnected along closing face; midtibia and midfemur with large, mostly separated dark brown spots on exterior face, somewhat denser and forming short transverse dark brown bands on closing face of tibia, subapical interrupted dark brown ring on femur, solid dark brown one on tibia; hindfemur pale brown with dark brown spots at setal bases, infuscated between spots especially on exterior face, large subapical dark brown band; hindtibia pale brown with large, mostly separated dark brown spots at setal bases on closing face, small dark brown stripe near base, spots becoming more striplike distally, exterior face nearly all pale brown except dark brown apical ring and smaller dark brown area toward base; tarsi of all legs similarly patterned, pale brown with apical dark brown ring on tarsomeres; wings nearly without suffusion, pale white stigmal area preceded by small darkish brown area in forewing; wing veins mostly pale brown, especially hindwing, with dark brown streaks along longitudinal veins principally at crossvein junctions, many crossveins dark brown especially apically in forewing; abdomen with tergites mostly pale brown with complicated pattern formed by dark brown areas (see Fig. 8), sternites mostly dark brown with a prominent although narrow median longitudinal pale brown line.
Chaetotaxy: Head with few prominent setae except on most of clypeus, white ones on dark brown areas of frons, longer ones on labrum and many long white setae on mentum and stipes; vertex with few inconspicuous appressed dark setae; pale with very sparse, short dark brown setae; pronotum with some short setae on disc, longer dark brown ones at lateral and posterior margin; row of five long white setae on each side of middle along anterior margin of scutum II, several smaller dark brown setae on prescutum II, elsewhere nearly absent or very short; pleuron and coxa with rather conspicuous long white hairlike setae; forefemur with dense, mostly appressed white setae on exterior surface, some black and some white erect setae distally, closing surface with fewer setae and with more black ones; foretibia with subbasal row of three black bristles, followed by another similar row, then one of two bristles and finally a subapical black bristle on exterior face, interspersed with shorter, mostly dark setae, closing surface with many stout setae, predominantly white; midfemur with row of white bristles on exterior surface, many other setae elsewhere but more hairlike and white; midtibia with mostly black setae of various sizes, larger black ones toward apex of lateral face, larger white ones near base of median face; hindfemur with many short, mostly appressed white setae; hindtibia with many setae along closing surface, white ones mostly concentrated in middle, exterior surface nearly without setae, only a few scattered minute ones; femoral sense hair of foreleg and midleg shorter than width of femur at that point; tarsi with rather dense, dark brown setae on closing surface flanked (typically) on the four basal tarsomeres by one white seta near apex, exterior surface with fewer setae, especially hindtarsus; abdomen with only microsetae on tergites I-V; starting with tergite VI, dark brown setae mostly laterally increasing in abundance toward terminalia; sternites with numerous, mostly white hairlike setae; postventral lobe with rather prominent black bristles toward apex (Fig. 3).

Structure: Head with vertex not much raised above eyes; greatest ocular width about one-third interocular distance (measured just below antennal fossae); antenna short and rather flattened with 19 flagellomeres, flagellomere I longer than wide, II about 1.5 times wider than long (in flat view) with increasing width toward apex; distal palpomere of labium rather slender, not much swollen, sensory pit oval and close to base; pronotum about twice as wide as long; femur of all legs broadened beyond base, tibia much more slender except midtibia, which is subequal to midfemur; midleg much shorter than either foreleg or hindleg; wing venation and shape as in Fig. 8; abdomen shorter than forewing, segments larger basally, decreasing in diameter beginning with segment IV; tergites I-V and sternite II with numerous scalelike spicules; terminalia as in Fig. 3, genitalia as in Figs. 3 and 4.

Types: Male holotype and 1 female paratype from Jacaré (N. Xingu), Mato Grosso, Brazil, XI 1961, M. Alvarenga collector 52° 24' W; 12° 00' S.
Holotype deposited in the collections of the Los Angeles County Museum of Natural History. Paratype female retained in the author's collection.

Variation: The female paratype agrees well in color, chaetotaxy and structure with the male except that the scalelike spicules on the abdomen are lacking. Female terminalia as in Fig. 5.

Discussion: This species is dedicated to Moacir Alvarenga, Brazilian coleopterist, for his efforts in securing critical ant-lion material from Brazil. The holotype male upon arrival at the depository was found damaged in transit. Most of the broken parts (pieces of wings, legs and antenna) are associated with the specimen and no difficulty in identification is foreseen although this was an unfortunate mishap. The photo (Fig. 8) shows the holotype before shipment.

Psammoleon Banks


Description: Antennal fossa separated from ocular rim by much less than greatest diameter of scape; antenna variable; pronotum wider than long; mesoscutellum smaller than metanotum; legs about equal in length, hindleg sometimes longer than foreleg; tibial spurs variable, usually shorter than forecoxal length; pretarsal claws not capable of closing against distal tarsomere; forewing with anterior margin evenly curved toward apex, costal area at point of coalescing of subcostal and radial veins lower than at middle of wing; forewing radial sector originates well beyond forking of CuA; posterior fork of forewing vein CuA at an oblique angle to hind margin; forewing vein 2A widely separated from normal 3A before strong angle toward posterior margin; hindwing vein CuA extends nearly to forking of MP, or somewhat beyond; male ectoproct simple without postventral lobe, except in P. cautas (Walker); male paramere in form of rigid plate (except cautas); male gonarcus not greatly expanded laterally (except cautas); female ectoproct without digging setae (sometimes long bristles present), often produced ventrally as a lobe; posterior gonapophysis well developed, often somewhat inflated.

Discussion: I studied the holotype male of the type-species of Diazus (D. clavatus Navás) in 1962 on loan from the Vienna Museum. The specimen is in good condition except that the hindlegs and abdominal terminalia are missing. My studies of this type indicate that D. clavatus is a typical Psammoleon, rather similar to Psammoleon minor Banks. Navás (1914:220) gave few remarks concerning the diagnostic features of Diazus except to point to a relationship with Incameleon and Glenopsis. Probably the swollen femora of D. clavatus prompted him to consider this species generically distinct. However it is clear that Diazus is a synonym of Psammoleon.
The genus *Psammoleon* is the largest genus in the Western Hemisphere Glenurini, with twenty-seven described species. Also I have seen a number of undescribed species, mainly from Mexico. Most species are found in North America. The genus is unknown south of Mato Grosso, Brazil. The long forefemoral sense hair (over one-half length of femur) is diagnostic. Also the rather swollen forefemur is characteristic except for *Pachyleon* and *Dimarella*. *P. cautos* (Walker) is intermediate between *Psammoleon* and *Dimarella* and perhaps should be placed in a distinct genus. However this situation suggests a relationship between these genera. The modified female ectoproct in many species of *Psammoleon* is also without known counterpart among Western Hemisphere Glenurini. Considerable variation is present between species in the development of the tarsus, forewing costal area and in chaetotaxy.

**KEY TO GENERA OF WESTERN HEMISPHERE GLENURINI**

1. Pretarsal claws capable of closing against distal tarsomere.................. 2
   Pretarsal claws not capable of closing against distal tarsomere.............. 4

2. Posterior fork of forewing vein CuA and vein CuP + 1A parallel with each other and hind margin for a long distance; antennal fossa separated by more than greatest width of antennal pedicel from ocular rim; male ectoproct with elongate postventral lobe........................................... *Dimarella*
   Posterior fork of forewing vein CuA at an oblique angle to hind margin; antennal fossa separated by less than greatest width of antennal pedicel from ocular rim; male ectoproct without elongate postventral lobe................ 3

3. Tibial spurs present; foreleg about equal or shorter than hindleg. *Elachyleon*
   Tibial spurs absent; foreleg (at least in female) usually longer than hindleg
   ........................................................................................................... *Navasoleon*

4. Antennal fossa separated by more than greatest width of antennal pedicel from ocular rim; hindwing about twice as long as wide, much shorter than forewing (Fig. 8); forewing vein 2A closely associated with 3A, not much angled (Fig. 2); subcostal and radial veins of both wings nearly touching, especially before their apical fusion; male ectoproct with elongate postventral lobe................................................................. *Pachyleon*
   Antennal fossa separated by less than greatest width of antennal pedicel from ocular rim; hindwing over three times longer than wide, about equal in length to forewing; forewing vein 2A widely separated from normal 3A before strong angle toward hind margin; subcostal and radial veins widely separated until their apical fusion; male ectoproct without postventral lobe (except *P. cautos*)........................................................................ 5

5. Forewing with anterior margin abruptly angled and swollen near coalescing of subcostal and radial veins, costal area at this point nearly twice as wide as at middle of wing; hindwing vein CuA ends well before midpoint to forking of MP₂; forewing radial sector originates well basad to forking of CuA ........................................................................................................... *Araucaleon*
Forewing with anterior margin evenly curved toward apex, costal area at point of coalescing of sub-costal and radial veins usually somewhat narrower than at middle of wing; hindwing vein CuA extends nearly to forking of MP₂ or beyond; forewing radial sector originates near or well beyond forking of CuA.......................................................... 6

6. Forefemur swollen, at widest point much wider than interantennal distance, with abundant pubescence, especially on closing surface; femoral sense hair or foreleg elongate, over one-half length of femur; female ectoproct often with ventral projection.........................................................Psammoleon
Forefemur slender and elongate, at widest point about equal at most to interantennal distance, with sparser pubescence; femoral sense hair of foreleg less than one-third length of femur; female ectoproct not produced ventrally .......................................................... 7

7. Apical one-fifth of hindwing and usually forewing with predominant dark brown suffusion in marked contrast to basal one-fifth; posterior gonapophysis of female weakly produced as a swelling..........................Glenurus
Apical one-fifth of wings predominantly transparent, sometimes many scattered dark brown spots present; posterior gonapophysis of female well developed, digitiform.....................................................Eremoleon

SYNOPTIC CATALOG OF THE WESTERN HEMISPHERE GLENEURINI
WITH TYPE INFORMATION

Genus Araucaleon Banks

Araucaleon Banks 1938b:127. Type-species: Araucaleon inca Banks, orig. design.
withycombei (Esben-Petersen) 1927:347 (as Glenurus). Hol. ♀, St. Augustine, Trinidad, VI. 1924 (BM). New Comb.

Genus Dimarella Banks

Dimarella Banks 1913a:229. Type-species: Eremoleon angustus Banks, orig. design.
=Furgus Navás 1921:51. Type-species: Nobra riparius Navás, orig. design.
=Mystroleon Banks 1924:436. Type-species: Myrmeleon praedator Walker.
angusta (Banks) 1908:31 (as Eremoleon). Hol. ♀, Santa Elena, Ecuador (MCZ).
Distribution: Neotropical (Costa Rica, Colombia, Ecuador, Venezuela, Brazil, Peru).

praedator (Walker) 1853:391 (as Myrmleon). Hol. ♀, Santarem, Brazil (BM).

 riparius (Navás) 1918b:16 (as Nebra). Lect. ♂, Santa Fe, Argentina, I.9. 1917 (Barcelona).
=Dimarella pallida Navás 1933a:89. Hol. ♂, S. Miguel, Argentina, XI.25. 1932 (Barcelona).
Distribution: Neotropical (Uruguay, Argentina).
silicatus (Navás) 1918b:6 (as Nebra). Hol. ♀, Mato Grosso, Brasil (La Plata). N. Comb.
tarsalis (Guilding) 1829:47 (as Formicaleo). Type (♀), ?Demerara (not located).
=Myrmleon effurus Walker 1853:388. Hol. ♀, Para, Brazil (BM).
Taxonomy: Hagen (1860:364); Banks (1913a:229; 1913b:86; 1943:168); Stange (1963:812).

Genus Elachyleon Esben-Petersen

Elachyleon Esben-Petersen 1927:348. Type-species: Elachyleon punctipennis Esben-Petersen, orig. design.
=Oroleon Navás 1927:49. Type-species: Oroleon serranus Navás, orig. design.
Taxonomy: Banks (1943:166); Stange (1963:810; 1968:56).
=Elachyleon punctipennis pulchellus Esben-Petersen 1932:113. Syntypes: ♀, Las Mercedes, Costa Rica, IV.27.1922 (Hamburg, destroyed); sex undet., Brazil (Berlin?).
Distribution: Neotropical (Mexico to Argentina).
serranus (Navás) 1927:50 (as Oroleon). Hol. ♀, Alta Gracia, La Granja, Sierras de Córdoba, Argentina, 1.8.1928 (Buenos Aires).

Genus Eremoleon Banks

Eremoleon Banks 1901:366. Type-species: Myrmeleon macer Hagen, orig. design.
=Incamoleon Banks 1913a:229. Type-species: Psammoleon punctipennis Banks, orig. design. New Synonymy.
=Glenopis Banks 1913a:229. Type-species: Myrmeleon anomalus Rambur, orig. design.
=Segura Navás 1914c:18. Type-species: Segura vitreus Navás, orig. design.
=Belen Navás 1921:119. Type-species: Belen cerverinus Navás, orig. design.
=Novulga Navás 1925:189. Type-species: Novulga mexicana Navás, orig. design.
=Joergenia Esben-Petersen 1932:118. Type-species: Joergenia pulchra Esben-Petersen, orig. design. New Synonymy.
anomalus (Rambur) 1842:388 (as Myrmeleon). Type (?s), Colombia (not located).
Taxonomy: Banks (1913a:229; 1943:171); Navás (1916:232); Stange (1968:57).
Distribution: Neotropical (Colombia, Venezuela, Brazil, Argentina).
capitatus (Navás) 1913:52 (as Formicaleo) Hol. (sex undet.), Rio de Janeiro, Brasil, VI.1911 (not located). New Comb.
Taxonomy: Banks (1943:68); Alayo (1968:68).
cerverinus (Navás) 1921:120 (as Belen). Hol. ♀, Río Almendares, Habana, Cuba, VIII.1.1915 (MCZ).
Taxonomy: Adams (1957:6); Alayo (1968:70).
conspicuaus (Navás) 1914a:219 (as Sosa). Hol. ♂, Brasil (Vienna). New Comb.
impluviatius (Gerstaecker) 1893:30 (as Glenurus). Hol. ♀, Locotal, Bolivia (Greifswald), New Comb.
Distribution: Nearctic (Mohave-Colorado Desert; Vizcaino Desert).
longior Banks 1938a:225. Syntypes ♀♀, Yucatan, Mexico (MCZ).
macer (Hagen) 1861:236 (as Myrmeleon). Hol. (sex undet.), Mexico (not located).
Taxonomy: Banks (1928:70); Adams (1957:86).
Distribution: Nearctic (Arizona); Neotropical (Mexico).
nigribasis Banks 1920:329. Syntypes ♂ ♀, St. George, Utah, VI.5,6 (MCZ).
Taxonomy: Banks (1928:71); Adams (1957:91).
Distribution: Nearctic (deserts).
pallens Banks 1941c:101. Syntypes, Picacho Peak, Arizona, VII.23 (MCZ).
peterseni (Banks) 1922:59 (as Glenopsis). Lect. ♂, Chanchamayo, Peru, XI (MCZ). New Comb.
psilocerus (Gerstaecker) 1893:32 (as Glenurus). Hol. (sex undet.), Merida, Venezuela (Greifswald). New Comb.
Taxonomy: Banks (1922:59; 1943:172).
=Formicaleo tetrastictus Navás 1913:51. Types(?), Venezuela (not located).
=Formicaleo stictopterus Navás 1916:232. New name for punctipennis
Banks 1910. (nomen nudum).
Distribution: Neotropical (Colombia to Argentina).

Genus Glenurus Hagen

Glenurus Hagen 1866:372. Type-species: Formicaleo grata Say, design. by
Banks (1928:67).
=Ledoscius Navás 1918:493. Type-species: Ledoscius penningtoni Navás,
orig. design.
SYNONYMY: Navás (1924:107).
gratus (Say) 1839:45 (as Formicaleo).
=Myrmecoleon roseipennis Burmeister 1839:995. Hol. (sex undet.), Nord-
Amerika (Halle).
Taxonomy: Walker (1853:392); Hagen (1861:225; 1866:405); Banks
(1892:360; 1928:67).
Distribution: Nearctic (East 100° Meridian).
heteropteryx Gerstaecker 1885:17. Hol. ♂, Chiriqui (Greifswald).
Distribution: Neotropical (Panama, Venezuela, Trinidad, Ecuador).
incalis Banks 1922:58. Syntypes, Chanchamayo, Peru (MCZ).
luniger Gerstaecker 1893:125. Hol. ♂, Chiriqui (Greifswald).
Taxonomy: Banks (1938:420).
Distribution: Nearctic (Arizona); Neotropical (Mexico to Panama).
peculiaris (Walker) 1859:194 (as Myrmeleon). Hol. ♂, Brazil (BM).
1970  Catalog of the Western Hemisphere Glenurini  23

Taxonomy: Hagen (1866:405); Banks (1922:58); Navás (1923:771).
penningtoni (Navás) 1918:493 (as Ledoscius). Hol. ♂, La Rioja, Argentina (not located).
=Glenurus croesus Banks 1922:59. Syntypes, Sara, Bolivia, 450 m. (MCZ).
Distribution: Neotropical (Bolivia, Argentina).

Genus Navasleon Banks

Navasleon Banks 1943:168. Type-species: Gymnocnemia boliviana Banks, orig. design.
boliviana (Banks) 1929:330 (as Gymnocnemia) Hol. ♀, Río Longo, Bolivia (MCZ).
Taxonomy: Banks (1943:168).
bosqui (Navás) 1922:258 (as Gymnocnemia). Hol. ♀, Santiago del Estero, Argentina (not located).

Genus Pachyleon Stange

Pachyleon Stange 1970: Type-species: Pachyleon alvarengai Stange, orig. design.
alvarengai Stange. Hol. ♂, Jacaré, Mato Grosso, Brazil, XI.1961 (LACM).

Genus Psammoleon Banks

Psammoleon Banks 1899:69. Type-species: Myrmeleon ingensiosus Walker, orig. design.
=Diazus Navás 1914:220. Type-species: Diazus clavatus Navás, orig. design.

*bipunctatus* (Navás) 1915:465 (as *Formicaleo*). Hol. ♀, Guyana Francesa (Paris).

Taxonomy: Banks (1943:170).

*distictus* (Hagen) 1861:235 (as *Myrmeleon*). Hol. (sex undet.), Cuba (Berlin?).

Taxonomy: Navás (1921:117); Banks (1928:61; 1941:177); Alayo (1968:65).

Distribution: Neotropical (so. Florida, West Indies, Yucatan, Mex.).

*cautus* (Walker) 1853:349 (as *Myrmeleon*). Hol. ♂, Brazil (BM).


Taxonomy: Banks (1943:170).

*clavatus* (Navás) 1914:221 (as *Diazus*). Hol. ♂, Amazones 1860 (Vienna). *New Comb.*

*connexus* (Banks) 1920:329 (as *Puren*). Hol. ♂, San Jacinto Mts., California VI.25 (MCZ).

Taxonomy: Banks (1928:61, 64).


*debitis* (Gerstaeker) 1893:44 (as *Formicaleo*). Hol. ♀, Chiriqui (Greifswald).

Taxonomy: Banks (1943:170).

Distribution: Neotropical (Panama; Colombia).

*decipiens* Banks 1935:54. Syntypes: 1♀, Georgia (MCZ); sex undet., Shreveport, Louisiana (MCZ).


Taxonomy: Banks (1928:61, 63).

*imbelliis* (Banks) 1941:102 (as *Puren*). Hol. ♀, Port au Prince, Haiti, XI.20 (MCZ). *New Comb.*

*ingeniosus* (Walker) 1853:337 (as *Myrmeleon*). Syntypes, Brazil & no data (BM).

Taxonomy: Hagen (1861:236; 1866:404); Banks (1899:69; 1906:99; 1943:169).

Distribution: Neotropical (Colombia, Brazil).

*iniquus* (Navás) 1914:208 (as *Formicaleo*) new name for *Formicaleo inaequalis* Navás 1913:51 (Preoccupied by *F. inaequalis* Navás 1912): Hol. (sex undet.), Amapola, Honduras, XI (not located). *New Comb.*

*inscriptus* (Hagen) 1861:230 (as *Myrmeleon*). Hol. ♂, Pecos River, Western Texas (MCZ).

Taxonomy: Hagen (1866:424); Banks (1904:106; 1928:66).
Distribution: Nearctic (Arizona-Sonora Desert).
leachii (Guilding) 1829:49 (as Formicaleo). Types (?), Jamaica (not located).
Taxonomy: Banks (1941:176, 177); Stange (1961:674); Alayo (1968: 66).
Distribution: Neotropical (So. Florida; West Indies).
parvulus Banks 1920:331. Hol. ♂, Chapada, Brazil (MCZ).
Taxonomy: Banks (1943:170).
posticatus Banks 1941:3. Hol. (sex undet.), Colombia (AMNH).
Taxonomy: Banks (1943:169).
reductus Banks 1941:177. Hol. ♂, Stakes Bay, Cayman Brac, Cayman Islands (MCZ).
New Comb.
Taxonomy: Banks (1943:170).
Taxonomy: Banks (1928:5, 64).

Resumen
Revisión Genérica y Catálogo de la Tribu Glenurini del Hemisferio Occidental con la Descripción de un Nuevo Género y Especies de Brasil.
Estudios sistemáticos de la Glenurini del hemisferio occidental han llevado a grandes cambios en su clasificación. Ocho nombres genéricos han sido reducidos a sinónimos y un género y especie nueva, Pachyleon alvarengai es descrito de Brasil. Estos sinónimos son: Elachyleon Esben-Petersen 1927 (=Sericoleon Esben-Petersen 1932); Eremoleon Banks 1901 (=Incamoleon Banks 1913, =Sosa Navás 1914, =Cortesius Navás 1924, =Dobla Navás 1926, =Joergenia Esben-Petersen 1932, =Antiloleon Banks 1943); Psammoleon Banks 1899 (=Diauz Navás 1914). Se dan ahora ocho géneros válidos. Se incluyen descripciones y observaciones sobre cada género además.
de una clave para su identificación. Se discute la posición sistemática de la tribu Glenuriní que se pasa a la subfamilia Myrmeeontidae, con la inclusión de los géneros de la tribu Dimarellini. Se agrega un catálogo sinóptico de las especies y géneros de la tribu con datos sobre los tipos y se indican muchas combinaciones nuevas además de cuatro sinónimos específicos nuevos. Estos son: Psammoleon caurus (Walker) 1853 (=Feinerus nebulosus Navás 1922); Psammoleon serrei (Navás) 1920 (=Formicoleo chaperi Navás 1922); Glenurus peculiaris (Walker) 1859 (=Glenurus brasiliensis Navás 1920); Erelemone macer (Hagen) 1861 (=Hesperoleon atomarius Navás 1933).

LITERATURE CITED

—. 1958. Further notes on the genus Erelemone Banks, with a new species (Neuroptera: Myrmeleontidae). Psyche, 64:6-8, figs. 1a-e.


Navas, L. 1913. Neurópteros nuevos de América, Broteria, 11:45-53, 6 figs.
179-203, 2 figs.
1922c. Algunos insectos del museo de París. Acad. Cien. Zaragoza, Rev., 7:
15-27, 6 figs.
1925. Insectos exóticos nuevos o poco conocidos. Acad. Cien. Barcelona,
Mem., (3) 19:181-200, 12 figs.
figs.
1927. Veinticinco formas nuevas de insectos. Bol. Soc. ibér. cien. nat., Zaragoza,
26:48-75, 9 figs.
figs.
32:360-375.
col. i-xii.
798-823, 21 figs.
———. 1963. The Dimarellini of Mexico with the descriptions of two new species of
(1967):5-86.
Walker, F. 1855. List of the specimens of neuropteron insects in the collection of
———. 1859. Lecitos de undescribed Neuroptera in the collection of W. W.

Accepted for publication February 18, 1970