FURTHER STUDIES ON AUDIBLE VOCALIZATIONS
OF THE AMAZON FRESHWATER
DOLPHIN, *INIA GEOFFRENSIS*

By Melba C. Caldwell and David K. Caldwell
CONTRIBUTIONS IN SCIENCE is a series of miscellaneous technical papers in the fields of Biology, Geology and Anthropology, published at irregular intervals by the Los Angeles County Museum of Natural History. Issues are numbered separately, and numbers run consecutively regardless of subject matter. Number 1 was issued January 23, 1957. The series is available to scientific institutions and scientists on an exchange basis. Copies may also be purchased at a nominal price. Inquiries should be directed to Virginia D. Miller, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007.

ROBERT J. LAVENTBERG
Managing Editor

INSTRUCTIONS FOR AUTHORS

Manuscripts for the LOS ANGELES COUNTY MUSEUM, CONTRIBUTIONS IN SCIENCE may be in any field of Life or Earth Sciences. Acceptance of papers will be determined by the amount and character of new information. Although priority will be given to manuscripts by staff members, or to papers dealing largely with specimens in the Museum’s collections, other technical papers will be considered. All manuscripts must be recommended for consideration by the curator in charge of the proper section or by the editorial board. Manuscripts must conform to those specifications listed below and will be examined for suitability by an Editorial Committee. They may also be subject to review by competent specialists outside the Museum.

Authors proposing new taxa in a CONTRIBUTIONS IN SCIENCE must indicate that the primary type has become the property of a scientific institution of their choice and cited by name.

MANUSCRIPT FORM.—(1) The 1964 AIBS Style Manual for Biological Journals is to be followed in preparation of copy. (2) Double space entire manuscript. (3) Footnotes should be avoided if possible. Acknowledgments as footnotes will not be accepted. (4) Place all tables on separate pages. (5) Figure legends and unavoidable footnotes must be typed on separate sheets. Several of one kind may be placed on a sheet. (6) An abstract must be included for all papers. This will be published at the head of each paper. (7) A Spanish summary is required for all manuscripts dealing with Latin American subjects. Summaries in other languages are not required but are strongly recommended. Summaries will be published at the end of the paper. (8) A diagnosis must accompany any newly proposed taxon. (9) Submit two copies of manuscript.

ILLUSTRATIONS.—All illustrations, including maps and photographs, will be referred to as figures. All illustrations should be of sufficient clarity and in the proper proportions for reduction to CONTRIBUTIONS page size. Consult the 1964 AIBS Style Manual for Biological Journals in preparing illustration and legend copy for style. Submit only illustrations made with permanent ink and glossy photographic prints of good contrast. Original illustrations and art work will be returned after the manuscript has been published.

PROOF.—Authors will be sent galley proof which should be corrected and returned promptly. Alterations or changes in the manuscript after galley proof will be billed to the author. Unless specifically requested, page proof will not be sent to the author. One hundred copies of each paper will be given free to each author or divided equally among multiple authors. Orders for additional copies must be sent to the Editor at the time corrected galley proof is returned. Appropriate order forms will be included with the galley proof.

VIRGINIA D. MILLER
Editor
FURTHER STUDIES ON AUDIBLE VOCALIZATIONS OF THE AMAZON FRESHWATER DOLPHIN, *INIA GEOFFRENSIS*

By MELBA C. CALDWELL and DAVID K. CALDWELL

ABSTRACT: Evidence is presented indicating the absence of a quasi-pure tone or whistle type of sound production by the Amazon freshwater dolphin. A discussion and sonagrams are given of the audible squeal or screech often attributed to *Inia geoffrensis*.

Phonations of the toothed whales and dolphins fall roughly into three categories. These include two types which generically are related (Norris, 1969) and probably are produced by the same mechanism, as they both consist of discrete clicks. One type demonstrates a slower click repetition rate and is usually associated with environmental investigation (echolocation), whereas the other is made up of bursts of clicks of higher repetition rates of 150 per second or more (Caldwell, Caldwell and Evans, 1966b). The latter create tonal sounds variously labeled by such names as barks, squawks, screeches or squeaks. These are associated with behavioral situations wherein we find a positive correlation between the time of their emission and the usefulness of a signal that could cue conspecifics to approach or withdraw (Caldwell and Caldwell, 1967). The third type of sound, most frequently termed a whistle, is a quasi-pure tone sound that cannot be resolved into individual clicks. These are the harmonic emissions of Tavolga (1965: 9) and Evans (1967). All odontocetes probably emit click sounds (Norris, 1968), but some do not emit the so called pure tone.

No whistles have been reported in sound work on the primitive Amazon freshwater dolphin, *Inia geoffrensis* (see Schevill and Watkins, 1962; Schevill, 1964; Caldwell, Caldwell and Evans, 1966a, 1966b; Caldwell and Caldwell, 1967; Evans, 1967; Poulter, 1968; Caldwell and Caldwell, 1969b).

All of these earlier works contain two deficiencies. First, on only one brief occasion was work done with more than one or two animals in a tank (Caldwell and Caldwell, 1967). This lack of community tank sound studies constitutes a potentially serious deficit, as vocalizations of odontocete cetaceans of the marine species with which we have worked tend to diminish in relative number in captivity if other animals are not present. Second, several

1Research Associate in Cetology, Los Angeles County Museum of Natural History; Staff Research Associate, Communication Sciences Laboratory, University of Florida, Gainesville.

2Research Associate in Cetology, Los Angeles County Museum of Natural History; Associate Professor, Communication Sciences Laboratory, and Staff Research Associate, Florida State Museum, University of Florida, Gainesville.
people handling *Inia* have reported a loud squeal or screech emitted by the animal which, from the observers' descriptions, might have been interpreted as a whistle (Allen and Neill, 1957; Layne and Caldwell, 1964; Caldwell, Caldwell and Evans, 1966b; Caldwell and Caldwell, 1969a, 1969b). This sound also has been described to us in personal conversation with Earl S. Herald of the Steinhart Aquarium, San Francisco; Lawrence Curtis, formerly of the Fort Worth Zoo, Texas; Leo Baumer of Iquitos, Peru; and W. J. LeBlanc and William C. Raulerson, Marineland of Florida. Until recently we had heard the sound out of water on one occasion, but did not record it. Further studies on this sound were thus considered necessary to determine whether these sounds are broad-band pulsed sounds and not a narrow-band whistle. Correction of these two deficiencies seemed mandatory, not only to help solidify our basic knowledge of cetacean phonations, but also because we have come to regard the absence or presence of the pure tone whistle as one of the significant characters in the precarious family relationships between members of the order Cetacea. Evidence to date suggests that the species of cetaceans considered to be more primitive also either lack the quasi-pure tone whistle or that when present it is less clear-cut than in those species considered to be more advanced.

We recorded *Inia* phonations from a community tank over a period of two years for a total of some 25 hours. The dolphins were held in a large display tank at Marineland of Florida and at various times the community contained from four to eleven animals of mixed sizes and sexes. Sound recordings were made with the animals at rest or swimming slowly, feeding, fighting, copulating, sick, dying, and semi-stranded. The community tank contained eleven animals during one seven hour recording session of a semi-stranding. The animals were recent captives which, in our experience, along with stranding increases the possibility of eliciting at least a few cetacean phonations. Additionally we have air recorded isolated individuals as they were being handled and medicated, as well as during venipuncture and force feeding.

Within the range of our equipment (40 to 20,000 Hz), we have not detected quasi-pure tone sounds, nor did Evans (in Herald, *et al.*, 1969; personal conversation, August, 1969) indicate the production of such sounds in his studies of *Inia* phonations with equipment sensitive to frequencies up to 100,000 Hz. The loud squeals that we recorded are pulsed as shown when they are subjected to detailed analysis, and the quasi-pure tone or whistle is still unknown in the vocal repertoire of *Inia* and we believe now that it is not to be expected.

An adult female emitted squeals both singly and in series 22 and 19 times on two successive days when she was removed from her tank for medication. On another occasion this same female, although not being handled, intermittently emitted loud squeals for about an hour when the water level in her tank was so low that she was partly stranded; but no recordings were
made. A juvenile male emitted seven squeals on one occasion when removed for medication and venipuncture. The four occasions are the only times of perhaps 30 to 40 in-air recording or listening sessions that the squeal was emitted by any individual of this species although all were subjected to the same amount of handling.

Sound spectrograms (sonagrams) of the squeals of both animals (Fig. 1) show them to be the burst-pulse type with a high click repetition rate (Watkins, 1967). Although these are broad band clicks with some energy extending above 12 kHz (Fig. 2), a strong fundamental frequency at one to two kHz is demonstrated on the sonagrams of the sounds of both animals (Fig. 1). These sonagrams show several characteristics in common with the type 2

or complaint type of signal of the pilot whale, *Globicephala melaena*, (Busnel and Dziedzic, 1966: 615, fig. 11), the tin horn sound emitted when excited by a strong stimulus by the Pacific whitesided dolphin, *Lagenorhynchus obliquidens*, (Caldwell and Caldwell, 1967: 889, figs. 5-7), and the squawk component of the whistle-squawk emitted in air by an excited Atlantic bottlenosed dolphin, *Tursiops truncatus*, (Caldwell and Caldwell, 1967: 897, fig. 22). Fundamental frequencies, depicted harmonics, and durations are similar in the four species. However, to the human ear the sounds are not alike.

Sound Equipment

The recordings discussed in this paper were made with a Uher 4000 Report-L recorder operating at a tape speed giving it a frequency response of 40 to 20,000 Hz with a compatible Uher microphone. Sound spectrograms were prepared on a Kay Sona-Graph model 662A Sound Spectrograph Analyzer calibrated in two sections from 85 to 12,000 Hz. When the recorded tape speed is reduced by half, and then fed into the analyzer, the response of the latter is doubled to 24,000 Hz. The effective filter bandwidths used for the illustrated analyses are indicated in the figure captions.

Acknowledgments

Financial support for certain phases of this work came from the National Science Foundation (GB-1189), the National Institute of Mental Health (MH-07509-01), the Office of Naval Research (N00014-67-C-0358, and modifications P001 and P002), and Marineland, Inc. The photographs are by William A. Huck. One of our associates, Nicholas R. Hall, made the air recordings that included the squeals.
LITERATURE CITED

Accepted for publication February 3, 1970